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First we briefly recall the definition of the three-dimensional Baxter-Bazhanov 
lattice model. The spins of this model are elements of Z^, and the R-matrix is 
associated to the algebra Uqsl(a) if q is a primitive Nth root of unity. Then we 
construct a particular N--* oo limit of the model, in which it is meaningful to 
interpret the spins as elements of R and which gives the free Gaussian boson 
model. Finally, we study special limits of the rapidity variables in which we 
obtain braid group representations and we show that for n odd the associated 
knot invariants are given by the inverse of products of Alexander polynomials, 
evaluated at certain roots of unity. 

KEY W O R D S :  Three-dimensional solvable models: tetrahedron equation; 
Baxter-Bazhanov models; generalized chiral Potts models; Yang-Baxter equa- 
tion; braid group representations; Alexander knot invariants. 

1. I N T R O D U C T I O N  

Baxter and Bazhanov I~ introduced an integrable model on a cubic lattice 
which is particularly interesting because it is one of the few solvable models 
in three dimensions. It is an IRF model and the spins are elements of Z^,. 

The Boltzmann weights of the Baxter-Bazhanov model give a solution 
of the tetrahedron equations which is a generalization of Zamolodchikov's. I-~'31 
A very important feature of the Baxter-Bazhanov model is that, apart from 
a slight modification of the boundary conditions, its two-dimensional 
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reduction gives the chiral Potts modelJ 4"5~ It is one of the most interesting 
integrable models and its Boltzmann weights satisfy the Yang-Baxter equa- 
tion 15'6) and are related to a cyclic representation of the algebra Uq(sl(n)) 
for q = e 2";/N. 

In ref. 7 we proved that it is possible to find limits of  the spectral param- 
eters in which the Boltzmann weights of the Baxter-Bazhanov model give 
braid group representations and we calculated the associated (cyclotomic) 
knot invariantsJ 8-~1~ 

In this paper we continue the study begun in ref. 7. In particular, we 
explore a large-N limit of the model. We show that making a rescaling of 
the spins l / x /~  ~ 1 in the limit N ~ o% it is meaningful to interpret the 
state variables of the model as elements of R. The model which is obtained 
with this continuation procedure is equivalent to the free Gaussian boson 
model introduced in ref. 12. 

Further, we see that for special limits of the rapidity variables it is 
possible to obtain (infinite-dimensional) braid group representations from 
the Boltzmann weights of the free boson model. In these limits we perform 
directly the Gaussian integration which gives the associated knot invariants 
and we show that for n odd they can be expressed as the inverse of 
a product of Alexander polynomials. As a consequence, by Milnor's 
theorem, ~13) the partition function 0 ~  of the model is proportional to the 
Reidemeister-Ray-Singer torsion for a specific manifold. 

In addition, the Alexander polynomials obtained in this paper are 
evaluated at the n th roots of unity, and these values are particularly inter- 
esting. From the point of view of the homology theory, as in the N-finite 
case, the invariants are connected with a presentation matrix of the Abelian 
group H~(Z,, Z) if Z,, is the nth cyclic covering space of S 3 branched 
along the link. 

2. THE B A X T E R - B A Z H A N O V  MODEL AND ITS 
T W O - D I M E N S I O N A L  REDUCTION 

The Baxter-Bazhanov model tl) is a three-dimensional integrable IRF 
model in which a state variable is associated with each site of a three-dimen- 
sional cubic lattice. The model depends on an integer N which fixes the 
number of values that a single spin can take. In fact, the state variables are 
elements of Zu. This is one of the most important features of the model. 
The Baxter-Bazhanov model is a generalization of the Zamolodchikov 
model, I-''31 the first three-dimensional integrable model, which was intro- 
duced at the beginning of the 1980s and which can be recovered when 
N = 2 .  
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In order to define the Bol tzmann weight of  an elementary cube of the 
Baxte r -Bazhanov  model  it is necessary to fix some notat ion first. Let 

0.) = e 2u i /N  ( 2 . 1 )  

be a primitive N t h  root  of  the unity, and 

(0  I/2 = e~ri/N (2.2) 

be its square root. Let ~ ( l )  and s(k, l) be functions such that  

q~( l) = (o91/2) m + m (2.3) 

s(k, 1) = co kl (2.4) 

and w(x, l) be the function such that  

/ 

w(x, l ) = A ( x )  / l"-[ (1 -- ogkx) -1 (2.5) 
k ~ l  

where x is a complex number ,  k, l are integers, and A(x) is given by 

zl(x) N = ( 1 - x N) (2.6) 

Let us fix the four rapidity variables p, p ' ,  q, q' e C. These variables are 
temperature-l ike variables. The Bol tzmann weight of  the elementary cube 
of the Bax te r -Bazhanov  model  is defined by 

N - - 1  

E 
o ' ~ 0  

v~(ale, f ,  glb, c, dlh) (2.7) 

where 

W(ale, f ,  gpb, c, dlh) = 

v~(ale,f,g[b, c, d[h) 

w(p'/p, e - c - d + h )  
s ( c - h ,  d - h )  s(g, a -  g - f  +b) 

- w(p'/p, a - g - f +  b) 

~w(p/q, d - h  - ix )  w(q'/p, a - f  +b) w(p'/q', a -  g - g )  

x s(a, a -- c - - f +  h)} (2.8) 

The spins a ..... h are placed at the eight vertices of  the elementary cell 
as is shown in Fig. 1. 
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Fig. 1. 
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-e -d 
Elementary cube of the Baxter-Bazhanov model. 

It is possible to connect the Bax te r -Bazhanov  model  with a two- 
dimensional  model  th rough  the following reduct ion procedure  (Fig. 2). We 
choose one of  the three dimensions in space with per iodic  b o u n d a r y  condi-  
tions. Let there be n e lementary  cubes in that  direction. It is possible to 
map  all the n spins located a long a line in that  direct ion in a single spin 
with n components .  This new state var iable  is placed at  a vertex of  a new 
lattice in such a way that  the whole line of  the three-dimensional  latt ice 
becomes one poin t  of  the two-dimensional  lattice. Wi th  this technique it is 
possible to reduce the three-dimensional  Bax te r -Bazhanov  model  to the 
two-dimensional  chiral  Pot ts  model ,  apar t  from a slight change of  the 
bounda ry  condit ions.  In this context  it is meaningful  to consider  a whole 
paral le lepiped ~ formed by a row of  n cubes and to s tudy its Bol tzmann 
weight. The spins are writ ten in the form a = ( ~ 1  . . . . .  (X,,),  where ai ~ ZN Vi. It 

I 

a = (,~,...,c,~) ..... 6 = (~1,...,~) 

Fig. 2. Reduction procedure: a parallepiped .~ of the three-dimensional Baxter-Bazhanov 
model becomes an elementary square of the chiral Potts model. 
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is important to notice that the Boltzmann weight is defined in such a way 
that the following equivalence relation holds: 

O~fl'C:~O~i--O~i+l=fli--fli+l V i = l  ..... n (2.9) 

This means that the Boltzmann weight is not modified if a spin ~ is 
replaced by another spin fl which is equivalent to ~ according to the equiv- 
alence relation (2.9). This is a technique to implement the ~"-~ symmetry ~ N  

of the model, which is another of its main features. 
The Boltzmann weight of the whole row of n cubes of the Baxter- 

Bazhanov model is given by the following expression: 

s(oc, D,y,a)= 1-I w(6il=i,y,,a,+, l ye+,,=,+I,D, ID,+,) 
i~Zn 

Making the change of the boundary conditions 

(2.10) 

cri =Pi--Pi+ 1 (2.11) 

we obtain a modified Baxter-Bazhanov model, and ~ has a Boltzmann 
weight which is defined by 

So(,X. D, y, a)  - -  1-I Y'. v.,_.,+,(a, Ioc,. y,. 6,+,  I ;,,+,, if.i+ i ,  fli I D,+,)  
i~z,, ,,, (2.12) 

The connection with the chiral Potts model 14's) arises because the 
Boltzmann weight of an elementary cell of that model is given exactly by 
the expression (2.12), which in fact can be written in the form 

So(p, p', q, q' [ oq fl, y, ~) 

w,,,.(~, p) w.~(p,/~) wr y) W,,v(6, ~) 
= ~it Wp,p((~, ))) Wp,q(~,].1) 

where Wpq(Oq fl) is given by 

Wpq(o~,/3)=.fi [ o;#'-#'+' 
i = 1  

(2.13) 

)t='+'-Pi+')w (Pi '  ~176 ~ -- f l i+ fli+ 

(2.14) 

The Baxter-Bazhanov model is integrable and the Boltzmann weight S 
introduced in (2.7) is a solution of the tetrahedron equations) 14-16~ From 

822/81/3-4-7 
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this it follows that the Boltzmann weight So, (2.12), of the chiral Potts 
model is a solution of the Yang-Baxter equations ts'6~ 

~So(p ,p ' , q , q '  I~,f l ,~,a) So( P, P', r, r' [ a, y, fi, e) 
a 

• q', r, r ' l  0c, a, e, x) 

= ~  So(q,q',r,r'  [fl, y ,~,a) 

x So(p,p', r, r' [ c~, fl, a, K) So(p,p', q, q' [ x, a, 6, e) 

The same holds for S: 

(2.15) 

S(p,p',  q, q' [ ~,fl, Y, cr) S(p,p',  r, r' I a, y, ~, ~) 

•  l oq a, e,x) 

= ~  S(q,q' ,r ,r '  [fl, ~,~,a) 

xS (p ,p ' , r , r '  l o~,fl, a ,x)  S(p ,p ' ,q ,q '  l x, a, 6, e) (2.16) 

3. T H E  L I M I T  N - *  ao 

In this section we study a particular continuous limit for N---, ~ of the 
Boltzmann weights S0(a, fl, ~, fi) of the modified Baxter-Bazhanov model. 
We restrict ourselves to the trigonometric case, in which 

p,=pj ,  q,=qj,  p; =p~, q;=qj Vi, j~Z , ,  (3.1) 

On the one hand this means that the model is homogeneous, and that all 
the cubes have the same rapidity variables. On the other hand it means 
also that the model is critical and this is an element which is important for 
obtaining topological invariants. 

To study the limit N--* oo, the first thing is to calculate the expression 
of the function w(x, l) defined in (2.5), 

/ 

w(x, 1)=A(x) / 1-[ (1 -cokx) -1 
k ~ l  

We obtain in the limit N--* 
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N I 
w(x,l)= I-] [(1--~okx) t/N] I-I [(1--cokx) -l] 

k = l  k = l  

[ log(1- -~kx)] -  ~ [log(1--0)kx)] =exp ~ t k=l 

~exp(/k~__N { l ~  x]} 

--k~, {log [ 1 -- (1 + 2n ik )  x] }) 

! 

x exp {-k~__, [l~ - x) + l~ (1 - 2r~i k 1 _ - -~) ]  } 

x) ( x)l 
-~ .exp  k ~ l  ---~-~2gik~ + ~ 2 ~ i ~  

k = l  

= e x p  - ~ _ _ r t i  ( N + I ) I _  x - - N - 1  

[ .I(N--I) x J (3.2) = exp r. ~ x -----1 

As a consequence of  the definition (2.I2) of  the model the terms in the 
exponent which are linear in I cancel out. This is a consequence of  the fact 
that these terms give expressions of  the type Z'~'= 1 0~;- ~;+ 1 = 0~ - ~,, + ~ = 0 
in the case of  periodic boundary conditions. There remains 

[2 X "~ 
w(x,l)~exp -~i-~-UL--f_lj for N ~  (3.3) 

It is meaningful to consider l as an element of R. This means that we 
calculate the limit of the Boltzmann weight So in the case N ~ ~ and then 
we interpret l=: I/,u/'N as a new continuous variable, taking values in R. 
Thus, we define 

w(x, l) ~ exp (nil2 ~ )  with leR (3.4) 

with I t R. Further, in an analogous way, we define 

ok(l) = e ~u2 (3.5) 
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and 

s(k,  1) = e 2~ikl (3.6) 

where k, l e  R. With these notations we can reconstruct So as in Eqs. (2.12) 
and (2.8) by substituting the sums with integrals. Notice that in the 
continuous limit it is formally correct to put N =  1 in the equations 
defining the Boltzmann weights and that 

w(x,  0) = 1 (3.7) 

At this point some observations are in order. 
First, it should be noticed that the model defined by Eqs. (3.4)-(3.6) 

is equivalent to the free boson model found by Baxter and Bazhanov in 
ref. 12. In fact it is possible to obtain the free boson model of ref. 12 by the 
transformation of the spectral parameters given by 

X 
= - 2 ~ - -  (3.8) 

1 -- v 1 - -x  

where x is the rapidity variable appearing in Eq. (3.4) and v the rapidity 
variable in Eq. (4.1) of ref. 12. Thus, in the thermodynamic limit the 
logarithm of its partition function x n is given by Eq. (4.8) of ref. 12, 

log K s = - 2  log x2 (3.9) 

Further, it is very important to notice that Eqs. (3.4)-(3.6) imply a par- 
ticular continuation procedure of the state variables. In fact, we obtain the 
Gaussian free boson model of ref. 12 because we have made a rescaling of 
the spins and we choose l / x / ~  as the new continuous variable. Thus the 
model constructed in this way is not equivalent to a model obtained in the 
large-N limit of the Baxter-Bazhanov model with a different continuation 
procedure, in particular with a different or no rescaling of the state 
variables. 

This can be verified immediately. Equation (3.9) does not coincide 
with the result which is obtained by simply taking the N-infinite limit of the 
logarithm of the partition function x~ of the finite-N Baxter-Bazhanov 
model in the thermodynamic limit, which is given by Eq. (3.34) of ref. 12, 

lim log x , v =  l i m  2 - ~  log x2= 21og K2 (3.10) 
N ~  

It results that log x s  and the N-infinite limit of log Xjv differ by a sign. 
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This is a consequence of the fact that (3.10) defines an implicit proce- 
dure to calculate the limit N---, oo which is different from the procedure 
used to obtain (3.4)-(3.6) because no rescaling and no continuation of the 
spins to the real numbers is done. In fact, in (3.10) the thermodynamic 
limit is taken before the limit N ~  ~ is calculated. This means that the 
thermodynamic limit and the limit N---, oo are taken in a different order in 
(3.9) and (3.10), and the limits may not commute for the above-mentioned 
reasons. 

Let us provide another example of continuous N-infinite limit of the 
Boltzmann weights So of the Baxter-Bazhanov model. Let us consider the 
case n =  2. In the trigonometric limit the sl(2)-chiral Potts model reduces 
to the Fateev-Zamolodchikov model. (~9~ In the limit N ~  ~ Fateev and 
Zamolodchikov obtain a model with a U(1) symmetry. (~9"2~ The connec- 
tion between the model which is studied here and the model studied by 
Fateev and Zamolodchikov in refs. t9 and 20 is that before calculating the 
limit N ~ oo Fateev and Zamolodchikov apply the self-duality property of 
their model to make a Kramers-Wannier  transform, which is a kind of 
Fourier transform. In this way they preserve the property of the spins to be 
cyclic and hence obtain the U(1) symmetry, but they lose the self-duality. 
On the other hand with the method outlined in this section we lose the 
cyclicity of the spins, but the self-duality is maintained, because the Fourier 
transform of a Gaussian function remains a Gaussian function. This dif- 
ference can be related to a different rescaling of the spin variable which is 
transformed to a real variable, namely Fateev and Zamolodchikov inter- 
pret the spin variable I/N as the new continuous variable, because N gives 
the period of the spins and they want to keep the model cyclic. Apart from 
this they also use a different parametrization of the spectral parameter. 
Their rapidity variable a is connected to the rapidity variable in (2.5) by 
the rule 

e i ~ . / N c o  --  1/2 = X 

It should also be noticed that the limits of w(x, 1) when x ~  0, 1, oo 
are exactly the same as are obtained in the case that N is finite, 

I 1 if x ~ O  

w(x,l)--* '~II) if x-- ,1  

~(r  if x--* oo 

(3.11) 

It can be verified by analogy with the case N finite that the infinite- 
dimensional model satisfies the Yang-Baxter equation 
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~ daSo(p,p ' ,q ,q ' loqf l ,  v,a) So(p ,p ' , r , r ' [a ,y ,  6, e) 
R n 

x S0(q, q', r, r'loq a,e, K) 

=f~ daSo(q,q ' , r , r ' l f l ,  y, 6, a) 
E R n 

x So(p, p', r, r' [ o~, fl, a, x) So(p, p', q, q' ] ic, a, 6, ~) (3.12) 

4. ALEXANDER I N V A R I A N T S  IN THE CASE N--,  oo 

By applying (3.12) and (3.11), it is possible to search for the limits of 
the spectral parameters which give (infinite-dimensional) representations 
of the braid group and to calculate the corresponding values of the 
Boltzmann weight So. First of all we introduce the Yang-Baxter operators 
with matrix elements given by 

(0c(1) ... ~ ( M -  1) [Yk(P,P', q, q')[ 0((1). . .  ~ ' ( M -  1)) 

=[ ]7 + (4.1) 
L I ~ k  J 

where M is a fixed integer. By choosing particular limits of the spectral 
parameters, the operators Yk give a representation of the braid group on 
M strings BM, even if it is infinite-dimensional, because the spins take 
values in R". In the finite-dimensional, because the spins take values in R". 
In the finite-dimensional case, given a knot, it is possible to obtain an 
associated invariant by a standard method, t~7" 18) namely by calculating the 
trace of an element of the braid group corresponding to a diagram of the 
knot in the representation spanned by the Yang-Baxter operators Yk 
defined by (4.1). It can be observed that also in the continuous large-N 
limit the Yang-Baxter operators belong to an algebra similar to the 
cyclotomic one which is obtain in the case N finite, t*-~l~ Therefore it is 
possible to repeat the same procedure used in the finite-dimensional case to 
see that the trace in the above-mentioned braid group representations gives 
topological invariants, and that they are unitary representations. 

If we want to eliminate the equivalence relation (2.9) the following 
change of basis in the spin set L can be made: 

OCi -"~ O ~ i - -  O~i q_ 1 (4.2) 

for i = 1 ..... n -  1. In fact the generator o% is superflous, because the spin set 
has the structure of a vector space and its dimension is n - 1  and not n 
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because of the equivalence relation (2.9). As in the finite-dimensional case 
we introduce the quadratic form on the spin set defined through the 
n -- 1 x n -- 1 matrix B 

Bo = if i<<.j (4.3) 
otherwise 

In this context it should be noticed that the relation 

~, co Bl~'tJ) - N " -  l,~ (4.4) 
- -  ~ ' / L 0  

~ E L  

which holds in the case N finite, becomes 

~ L  de e 2~is~'p~ = t~(fl) (4.5) 

in the case N infinite. 
Moreover, it can be verified that if we take, e.g., the following limit of 

the rapidity variables 

(Ia) p ~ q ~ p ' = q '  (4.6) 

and if we multiply the Boltzmann weight So by the factor 

e x p { n i [ B ( 6 , 6 ) - - B ( f l ,  f l ) + B ( f l - 6 ,  y ) + B ( ~ , f l - - 6 ) ] }  (4.7) 

which is only an equivalence relation that does not modify the partition 
function or the commutation relation of the transfer matrices of the model, 
we obtain the following expression for the Yang-Baxter operators: 

(a(1)  . . . . ( M -  1)IYkl ~ ' (1) . . .  o((M-- 1)) 

= [,IJk O(a(/)--a ' ( / ) )]  exp{2ni[B(o~'(k) ,o~(k))  

- - �89  ~ ' ( k )  ) - � 8 9  o~(k) ) 

- � 8 9  - -  1 ), o~(k) - or + B(o~(k)  - ~'(k), a(k + 1 ))]  } (4.8) 

By using this formula it can be shown that the trace of an element t of the 
braid group which can be closed to give a knot K in the representation 
spanned by the operators Yk can be written in the form 

/ ,  

Tr(t) = 1 do~ e ~iQc~''~ 
~ R~'  ~ R n  - I 

(4.9) 
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where 

Q = S |  S r |  r (4.10) 

and S is a v x v Seifert matrix for the knot and T denotes the transposition 
of a matrix. In this expression the trace is defined as 

Tr(t) = I~LM-, d~ (~ Itl 0c) (4.11) 

It should be noticed that the expression (4.9) gives the partition function 
~ of the continuous large-N limit of the Baxter-Bazhanov model corre- 
sponding to the transfer matrix t. 

To see that (4.9) effectively holds, the following procedure can be used. 
The operators Yk in (4.8) in the preceding limit of the spectral parameters 
can be written in the form 

(a (1) . . .  c((M- 1)IY~-I ~'(1)-.. s  l ) )  

=fp~L dae-"B~P'/J)(a(1)...o~(M - 1)Ix{I a ' ( 1 ) - . - s  1)) (4.12) 

where xg is the operator given by 

(~(1) . . . a (M- -  1)Ixgl s  ~ ' ( M -  1)) 

=[ ,~k  5(o~(l)-o~'(1))] 6(o~(k)- f l -od(k))  

x exp{ ni[B(o~(k) - o~'(k), o~(k + 1 )) - B(~(k -- 1 ), o~(k) - od(k)) 

- B(a (k ) ,  ~' (k))  + B(~'(k) ,  ~(k))] } (4.13) 

It can be immediately verified that the matrices x~ obey the following com- 
mutation relations: 

x ~  1 

XkX k - ~  .fl _-- eniAtfl,~)X~+fl 
(4.14) 

X k ' ~  "fl + I = C02niB(cc'fl)Xflk + 1X'~tk 

-~ P -  P -~ if I k -k ' l>12  .Y .kXk  , - - X k , . •  k 
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These are generalizations of the cyclotomic algebra which appears in the 
case N finite/8-~'7) The trace of the operators x~. can be defined by the 
following equation: 

Tr(x2) = d~(~) (4.15) 

By using the commutation relations (4.14), Eq. (4.5), the definitions (4.11) 
and (4.15) for the trace, and a suitable Seifert form (the same used in 
ref. 8), we find that Eq. (4.9) is immediate. Further it can be observed that 
the matrix Q defined in (4.10) has a precise topological meaning, because 
it is a presentation matrix for the module H~(E,,, Z) if it is interpreted a 
matrix with integer entries and Z'. is the n th cyclic covering space of S 3 
branched along the knot. It can be noticed that we obtain 

Tr(1) ~ ov (4.16) 

but this is related to the fact that the dimension of the space is infinite. The 
trace of an element of the braid group t which can be closed to give a knot 
K and hence the expression (4.9) is well defined whenever the matrix Q is 
not singular and hence the Betty number of Hi(E,,,  Z) is 0. This could be 
expected, because in the case N finite the absolute value of the invariant is 
given by N raised to the Betty number, and this diverges in the large-N 
limit if the Betty number is not 0. 

By applying the formula to calculate a Gaussian integral, expression 
(4.9) becomes 

1 
Tr(t) [ i , , t , , _ l l ] t / , _ d e t ( B ) - m d e t ( S | 1 7 4  -t/2 (4.17) 

The 17- 1 eigenvalues xi, i =  1,..., n -  1, of - B r B  -~ are exactly the i i -  1 
nth roots of unity which do not coincide with 1. This can be verified with 
the following procedure. B -  ~ is the n - 1 x n - 1 matrix given by 

(B 1) 0= t - i  

and therefore Br 'B-Ican  be written as 

if i = j  
if j = i +  1 
otherwise 

(4.18) 

(BrB-1)o .= _ 
if j = l  

if j = i + l  

otherwise 

(4.19) 
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But the characteristic polynomial  of  --BrB -~ is 

I t - -  I 

( - - 1 ) " - '  Y' t; (4.20) 
i = O  

and therefore the eigenvalues of  this matrix are the n -  1 n th  roots of  unity 
which do not coincide with 1. Further,  it results that  

det(B) = ( - 1 ) " -  ~ (4.21) 

This means that  we obtain for the part i t ion function ~ the expression 

1 , , -  1 

~=Tr(t )=[i( , , - , iO(_l) , , -~]l / ,_  I-I JK(Xi) -1/2 
i = |  

(4.22) 

Here Jr(x)  denotes the Alexander polynomial  of  the knot,  and in (4.22) 
we have used the following expression for Jx: 

J K( x ) = det(S - xS r) (4.23) 

It can be noticed that  in the case n = 2 we have only the eigenvalue 
x~ = -  1. As a consequence the module of  the invariant just gives the 
inverse of  the square root  of  the invariant known as the determinant  of  the 
knot,  which gives the order of  the Abelian group H~(Z" 2, Z). 

It can be seen that  in the part icular  case when n is odd, expression 
(4.22) can be written in the form 

(n - 1 ) / 2  

~ = T r ( t ) =  I-I ..,x'(.2t'-g)/2AK(Xi) - 1  (4.24) 
i = l  

because with the normalizat ion of the Alexander polynomial  implicit in 
definition (4.23) we have 

jK(x)=x~-,'-g A ~ x  -l) (4.25) 

if g is the degree of the Alexander polynomial ,  and 

i~ 1)( - 1 )" - ]  = I (4.26) 

because v is even for any Seifert matrix. 
This means that the expression (4.24) is constructed in such a way as 

to give exactly a product  of  Alexander -Conway polynomials.  Therefore 
(4.24) is real, because this polynomial  is symmetric.  

Moreover ,  it can be noticed that  the inverse of  a product  of  Alexander 
polynomials  AK(xi) can be understood as the inverse of  the Alexander 
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polynomial d L(x) for a suitable link L with components {K i} i= 1.__..~,,-1:_, 
where n is odd and the Ki are (n -- 1)/2 copies of the knot K appearing in 
the previous section and such that x={xalx~eHl(S3-K~)}. Then it is 
well known that A/_ can be related ~3) to the Reidemeister-Ray-Singer 
torsion of the manifold obtained by closing the complementary space in S 3 
of L. This is a so-called Dehn surgery topological invariant of three- 
manifolds. 

Equations (4.22) and (4.24) are our main results. 
Let us conclude this section with some remarks. First, we notice that 

the invariants are well defined whenever the Alexander invariant of the link 
is not 0 for some nth root of unity. 

Moreover, the same invariants can be obtained by several other 
spectral limits which differ from (4.6), for instance, the limits given by 

(Ib) q ~ p ~ p ' = q '  

(IIa) p' ~q' ~p=q 

(IIb) q' <g.p' ~p=q  

(4.27) 

In the case (Ib) we recover the inverse of the operators Yk, while in the 
other two cases we obtain operators which are the transposed matrices of 
the preceding ones. 

Probably the same invariants may not be obtained by applying a 
different procedure to calculate the large-N limit of the model. 

5. CONCLUSIONS AND GENERALIZATIONS 

In this paper we have studied the free Gaussian boson model obtained 
as a particular large-N limit of the Baxter-Bazhanov model. We have 
proved that the knot invariants associated with the (infinite-dimensional) 
braid group representation arising therefrom can be expressed as products 
of Alexander invariants (4.22), (4.24). 

As the cyclotomic invariants which are obtained in the case N finite 
are related to the module H,(Z,,, ZN), where _r,, is the nth cyclic covering 
of the knot with which the invariant is associated, it would also be 
interesting to investigate the limit n .4 oo of the model, in which we should 
obtain something related to the infinite cylic covering of the knot. But the 
large-n limit is interesting for other reasons, too. In the first place, it 
corresponds to the thermodynamic limit and there are hints that the 
Baxter-Bazhanov model in that limit is relted to a parafermionic model. 12~ 
In the second place, we would obtain informations about Uq(sl(n)) when 
1 7 . 4  0(3. 
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Another observation is that in the so-called large-coupling-constant 
limit, the dominant part of the partition function of a three-dimensional 
continuum non-Abelian SU(2) Chern-Simons theory over a three-manifold 
M 3 obtained by Dehn surgery along a link L in a homological sphere is 
proportional to the inverse of the Alexander polynomial of L. (2"-~ It would 
be interesting to determine if there is some deeper reason these partition 
functions coincide. 

We hope to return to these themes in a forthcoming work. 
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